Machine Learning with Caret
Max Kuhn
15 Spots

Join Max Kuhn on a tour through Machine Learning in R. You'll learn about data preparation, model fitting, model assessment and predictions. Prior experience with lm is enough to get started and learn advanced modeling techniques.

Geospatial Statistics and Mapping in R
Kaz Sakamoto
7 Spots

Geospatial expert and Columbia Professor Kaz Sakamoto is leading this class on all things GIS. You'll learn how about map projections, spatial regression, plotting interactive heatmaps with leaflet and working with shapefiles.

Git for Data Science
Dan Chen
7 Spots

Daniel Chen, author of Pandas for Everyone, has given multiple talks at the New York R Conference about the data science workflow. In this workshop he'll teach how to use Git and project management for better organization and faster iteration.

Introduction to Survival Analysis
Emily Zabor
7 Spots

Time-to-event outcomes are common in a variety of statistical applications, but the statistical techniques needed to appropriately analyze data in the presence of censoring or when predictor variables are not observed at baseline are not always taught as part of a standard statistics curriculum. This workshop will introduce the statistical techniques needed to address common questions in the context of time-to-event outcomes. Topics covered will include types of censoring, the Kaplan-Meier estimator of the survival function, Cox proportional hazards regression, analysis of time-dependent covariates, and competing risks methods to handle situations where more than one type of event is possible. All common statistical analyses will be demonstrated in R, including use of the survival and ggsurvplot packages.

More Workshops To Be Added Soon